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Abstract
We show that the known matrix representations of the stationary state algebra
of the asymmetric simple exclusion process (ASEP) can be interpreted
combinatorially as various weighted lattice paths. This interpretation enables us
to use the constant term method (CTM) and bijective combinatorial methods
to express many forms of the ASEP normalization factor in terms of ballot
numbers. One particular lattice path representation shows that the coefficients
in the recurrence relation for the ASEP correlation functions are also ballot
numbers. Additionally, the CTM has a strong combinatorial connection which
leads to a new ‘canonical’ lattice path representation and to the ‘ω-expansion’
which provides a uniform approach to computing the asymptotic behaviour
in the various phases of the ASEP. The path representations enable the ASEP
normalization factor to be seen as the partition function of a more general
polymer chain model having a two-parameter interaction with a surface.

We show, in the case α = β = 1, that the probability of finding a given
number of particles in the stationary state can be expressed via non-intersecting
lattice paths and hence as a simple determinant.

PACS numbers: 05.50.+q, 05.70.Fh, 61.41.+e

1. Background and notation

The asymmetric simple exclusion process (ASEP) is a simple hard core hopping particle
model. It consists of a line segment with r sites. Particles are allowed to hop on to site 1 if
it is empty, with rate α. Any particles on sites 1 to r − 1 hop on to a site to their right if it is
empty, with rate 1. A particle on site r hops off with rate β—as illustrated in figure 1. The
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Figure 1. The ASEP model.

state of the system at any time is defined by the set of indicator variables {τ1, . . . , τr}, where

τi =
{

1 if site i is occupied

0 otherwise

and the probability, P(�τ ; s) of the system being in state �τ = (τ1, . . . , τr ) at time s, given some
initial state at s = 0, satisfies a master equation (see [1] for details).

The model goes back at least as far as Macdonald, Gibbs and Pipkin [2] who used it in
their study of kinetics of protein synthesis. For reviews of the extensive physics literature,
including applications and analytical techniques, for this model and further developments of
the model, see Schültz [3, 4], Derrida and Evans [5], Derrida [6] and Stinchcombe [7]. The
mathematical literature placing the model in the context of Markov chain theory may be found
in the Liggett’s book [8].

A significant step forward in the understanding of the mathematical aspects of the model
was made with the realization, by Derrida et al [1], that a stationary state solution, PS(�τ), of
the master equation could be determined by the matrix product Ansatz

PS(�τ) = 〈W |
r∏

i=1

(τiD + (1 − τi)E)|V 〉/Z2r (1.1)

with normalization factor Z2r given by

Z2r = 〈W |(DE)r |V 〉 (1.2)

provided that D and E satisfy the DEHP algebra

D + E = DE (1.3a)

where 〈W | and |V 〉 are the eigenvectors

〈W |E = 1

α
〈W | D|V 〉 = 1

β
|V 〉. (1.3b)

These equations are sufficient to determine PS(�τ) but Derrida et al [1] also gave several
interesting matrix representations of D and E and the vectors |V 〉 and 〈W |, any one of which
may be used to determine PS(�τ).

The primary result of this paper is to show that each of the three matrix representations of
the DEHP algebra can be interpreted as a transfer matrix for a different weighted lattice path
problem. This then allows the normalization, correlation function and other properties of the
ASEP model to be interpreted combinatorially as certain weighted lattice path configuration
sums—see section 2. One of the path connections is similar to that discussed in Derrida et al
[9].

The lattice path interpretation has two primary consequences: the first is that it provides
a starting point for a new method (the ‘constant term’ or CT method) for calculating the
normalization and correlation functions—see section 3. This reproduces several existing
results (but by a new method) and also provides several new results. One of note, the ‘ω-
expansion’, arises from a rearrangement of the constant term expression which leads to a
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form of the normalization in terms of the variables ωc ≡ α(1 − α) and ωd ≡ β(1 − β). The
coefficients in this expansion are Catalan numbers, the asymptotic form of which enables a
uniform approach to computing the asymptotic behaviour of Z2r as r → ∞ in the various
phases of the ASEP model—see section 5. The results agree with those found in [1], by
steepest descent methods.

A bonus following from the lattice path interpretation of the algebra representations is
that one of the lattice path interpretations (a slight variation of representation 3) has a natural
interpretation as a polymer chain having a two-parameter (κ1, κ2) interaction with a surface.
In this context Z2r is a partition function for the ‘two-contact’ polymer model—see section 4.
We also obtain recurrence relations (on the length variable) for the partition function of
this polymer model and hence also for the ASEP normalization. Our formulae for the
single polymer chain may be used to construct the partition function for a polymer network
interacting with a surface (see conclusion). In particular, in a subsequent paper we will discuss
the application to vesicles and compact percolation clusters [10] near a damp wall.

The second primary consequence of the lattice path interpretation follows from the CT
method itself, as the CT method has very natural combinatorial interpretations. For example,
the normalization can be written in several different polynomial forms depending on which
variables you use:

Z2r =
∑
n,m

p(1)
n,mᾱnβ̄

m
(see (4.24)) (1.4)

Z2r =
∑
n,m

p(2)
n,mcndm (see (4.31)) (1.5)

Z2r =
∑
n,m

p(3)
n,mκn

1 κm
2 (see (4.20)) (1.6)

Z2r =
∑
n,m

p(4)
n,mκ̄n

1 κ̄
m
2 (see (4.21)) (1.7)

where all the polynomial coefficients, p(i)
n,m, are integers. (All the variables in these polynomials

are related by simple equations e.g. ᾱ = 1/α, c = ᾱ −1, etc—see above and in later sections.)
Since, in each of these cases, the normalization arises from a weighted lattice configuration
sum, all the above coefficients have a direct combinatorial interpretation as enumerating a
particular subset of the paths (e.g. those with exactly m steps with the first weight and exactly
n steps with the second weight).

However, we show that each of the above polynomial coefficients has an alternative
combinatorial interpretation which corresponds to enumerating a different, unweighted, set of
lattice paths, e.g. in [1] the coefficient p(1)

m,n was given as

p
(1)
n,m−n = m(2r − m − 1)!

r!(r − m)!

which, with a simple rearrangement, can be seen to be a particular ‘ballot number’

p
(1)
n,m−n = B2r−m−1,m−1

where Bs,h enumerates ballot paths (see section 3.1 for details) of length s and height h.
Thus p

(1)
n,m−n which enumerates a special set of paths with m weights of type ᾱ and n − m

weights of type β̄ = 1/β is seen to be determined in terms of the much simpler combinatorial
problem of enumerating unweighted ballot paths of length 2r − m − 1 and height m − 1. This
correspondence between the two combinatorial problems (one pair for each coefficient) arises
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as a bijection between the two path problems. This result may be turned around: if a bijection
between a particular ballot path problem and the weighted path problem can be proved then it
provides an alternative derivation of the normalization polynomial.

In section 6, the recurrence relations for the ASEP correlation functions derived in [1]
are shown to follow from the lattice path interpretations. The coefficients of the terms in the
recurrence relation are also seen to be various ballot numbers.

Finally, in section 7, for the case α = β = 1, we show that the probability of finding the
system in some particular state �τ is related to non-intersecting pairs of paths and the probability
of finding the system in a state with exactly k particles is related to a simple determinant. This
provides a connection with Derrida et al Brownian excursions [9].

2. Matrix representations and lattice path transfer matrices

Derrida et al [1], provided three different matrix representations for the ASEP algebra.
Representation one,

D1 =




β̄ β̄ β̄ β̄ β̄ · · ·
0 1 1 1 1 · · ·
0 0 1 1 1 · · ·
0 0 0 1 1 · · ·
...

...
...

...


 E1 =




0 0 0 0 0 · · ·
1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
...

...
...

...


 (2.1)

〈W1| = (1, ᾱ, ᾱ2, ᾱ3, . . .) |V1〉 = (1, 0, 0, 0, . . .)T (2.2)

where

ᾱ = 1/α β̄ = 1/β

representation two,

D2 =




1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...


 E2 =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...


 (2.3)

〈W2| = κ(1, c, c2, c3, . . .) |V2〉 = κ(1, d, d2, d3, . . .)T (2.4)

where

c = ᾱ − 1 d = β̄ − 1

and representation three,

D3 =




β̄ κ 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...


 E3 =




ᾱ 0 0 0 0 · · ·
κ 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...


 (2.5)

〈W3| = (1, 0, 0, 0, . . .) |V3〉 = (1, 0, 0, 0, . . .)T (2.6)
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Figure 2. (a) Action of D and E matrices on the square lattice, (b) the labelling of the matrix
elements.
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Figure 3. Examples of the paths for each of the three representations: (a) representation one,
‘jump step paths’, (b) representation two, ‘cross paths’ and (c) representation three, ‘one-up paths’.

where

κ2 = ᾱ + β̄ − ᾱβ̄ = 1 − cd.

Since these matrices and vectors satisfy the algebraic relations (1.3), the normalization
factor (1.2) for the ASEP model, can be evaluated using any of the three formulae

Z
(j)

2r = 〈Wj |(DjEj )
r |Vj 〉 j = 1, 2, 3. (2.7)

Each of these three representations can be interpreted as the transfer matrix of a particular
weighted lattice path problem. If the rows of the Dj matrix and the columns of the Ej matrix
are labelled with odd integers Zodd ≡ {1, 3, 5, . . .} and the columns of Dj and rows of Ej

are labelled with even integers Zeven ≡ {0, 2, 4, . . .}, then (Dj )k,� is the weight of a step from
an odd height k to even height � and (Ej )k,� is the weight of a step from an even height j

to an odd height � (see figure 2). Since the rows and columns are labelled with non-negative
integers the steps are only in the upper half of Z

2.
Similarly, the elements of 〈Wj | and |Vj 〉 are labelled by Zodd and are the weights attached

to the initial and final vertices of the paths. The matrices Dj and Ej act successively to the left
on the initial vector 〈Wj | and 〈Wj |(DjEj )

r |Vj 〉 is the weighted sum over all paths of length
2r which begin and end at odd height above the x-axis.

An example path for each of the three representations is shown in figure 3. Note that for
the first representation the paths with non-zero weight begin at any odd height and end at unit
height, for the second they both begin and end at any odd height and for the third they begin
and end at unit height. All these paths are defined explicitly below.

Derrida et al gave another expression for the normalization factor (see equation (39) of
[1]). This form does not arise directly from any of the above three representations, however, we
will show (corollary 5) that it is the partition function Z

(5)
2r , defined in (2.16), corresponding

to a ‘canonical’ path representation (see figure 6 for an example). In [11] we provide a
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combinatorial derivation of the equivalence of the above three and a number of other path
representations of the normalization factor to the ‘canonical’ representation.

2.1. The lattice path definitions

We consider paths whose steps are between the vertices of the half plane square lattice
� = {(x, y)|x ∈ Z, y ∈ Z

+}, where Z (resp. Z
+) is the set of integers (resp. non-negative

integers).

Definition 1 (lattice paths). A lattice path, ω, of length t � 0 is a sequence of vertices
(v0, v1, . . . , vt ) where vi ≡ (xi, yi) ∈ �, and for t > 0, vi − vi−1 ∈ Sp

i where
{
Sp

i , i =
1, . . . , t

}
is the set of allowed steps. For a particular path, ω, denote the corresponding

sequence of steps by E(ω) = e1e2 · · · et , ei = (vi−1, vi). A sub-path of length k of a lattice path,
ω, is a path defined by a subsequence of adjacent vertices, (vi, vi+1, . . . , vi+k−1, vi+k), of ω.

Definition 2 (Dyck P
(D)
2r , ballot P

(B)

t;h , & cross P
(C)

t;h1,h2
paths). The set of length 2r Dyck paths,

P
(D)
2r ; length t and height h ballot paths P

(B)

t;h , and length t and heights h1 and h2 cross paths

P
(C)

t;h1,h2
all have step setSD

i = {(1, 1), (1,−1)}. Dyck paths have v0 = (0, 0) and v2r = (2r, 0),
ballot paths have v0 = (0, 0) and vt = (t, h) and cross paths have v0 = (0, h1) and
vt = (t, h2), h1, h2 � 0. Denote, P

(C)
2r = ⋃

h1,h2∈Zodd
P

(C)

2r;h1,h2
.

Definition 3 (elevated Dyck path (bubble)). An elevated Dyck path or bubble, is a sub-path,
(vi, . . . , vi+k), k � 0, for which yi = yi+k and yj � yi for all i < j < i + k, k > 0. If k = 0
then the elevated Dyck path is a single vertex.

Definition 4 (anchored cross P
(aC)

t;h1,h2
paths). The subset P

(aC)

t;h1,h2
⊂ P

(C)

t;h1,h2
of anchored cross

paths is defined as all the paths in P
(C)

t;h1,h2
with at least one vertex in common with the line

y = 1. Denote, P
(aC)
2r = ⋃

h1,h2∈Zodd
P

(aC)

2r;h1,h2
.

Definition 5 (one-up P
(O)
2r paths). The set of one-up paths, P

(O)
2r is the set of lattice paths

of length 2r which have step set SD
i = {(1, 1), (1,−1)}, v0 = (0, 1) and v2r = (2r, 1), i.e.

P
(O)
2r = P

(C)

2r;1,1.

Definition 6 (jump-step P
(J)

t;h paths). The set of jump-step paths of length t, P
(J)

t;h , is the set of
lattice paths which have step set

SJ
i =

{
{(1,−1)} for i even

{(1,−1)} ∪ {(1, 2� + 1)|� ∈ Z
+} for i odd

with v0 = (0, h), h ∈ Zodd, vt = (t, 1). The ‘height’, gi , of a step ei = (vi−1, vi) is defined
as yi − yi−1. Odd steps with gi ∈ {3, 5, . . .} will be called ‘jump’ steps. If gi = 1 (resp.
gi = −1) the step is called an ‘up’ (resp. ‘down’) step. Denote, P

(J)
2r = ⋃

h∈Zodd
P

(J)

2r;h.

Note. Jump-step paths never visit the x-axis since such a visit can only occur on an odd
step and return to y = 1 is impossible since all even steps are down.

Definition 7 (hovering P
(H)
2r , separated hovering P

(sH)

2r;2p and marked separated hovering P
(mH)

2r;2p

paths). Hovering paths, P (H)
2r are one-up paths with no vertex on the x-axis. Separated hovering

paths, P
(sH)

2r;2p, 0 � p � r , are the subset of the hovering paths which have v2p = (2p, 1).
The vertex v2p is marked (with an empty circle—see figure 4( f )) and known as the separating
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(a) (b) (c)

(g) (h)

h

(d)

intersects y = 1

(e)

above y = 0

(f)

2p

vertex (marked)separating

(i)

Figure 4. An example of (a) a Dyck path, (b) a ballot path, (c) a cross path, (d ) an anchored cross
path, (e) a hovering path, ( f ) a separated hovering path, (g) a one-up path, (h) a jump-step path
and (i) a marked separated hovering path.

κ1 κ1

κ2 κ2κ2

Figure 5. An example of a representation three, one-up path, with the weights re-organized.

vertex. Marked separated hovering paths, P
(mH)

2r;2p , are obtained from P
(sH)

2r;2p by marking (with
an solid circle—see figure 4(i)) subsets of the steps (or vertices) which return to y = 1.

Note. For all paths considered xi + yi is either odd for all i or even for all i, i.e. the paths
are confined either to the odd sublattice or the even sublattice.

Definition 8 (contacts, returns). A vertex of a ballot or Dyck path in common with the x-axis
is called a contact. All contacts except the initial one are called returns. The polynomial
Rt(h; κ) = ∑

ω∈P
(B)

t;h
κρ(ω), where ρ(ω) is the number of returns for the path ω, is called the

return polynomial for ballot paths.

2.2. Weights and lattice path representations

For each of the three different representations the following lemma converts the matrix formula
(2.7) for the normalization factor into a sum over one of the path sets defined above, where
the summand is a product of the step weights w

step
j (ei), an initial vertex weight wi

j (v0), and a

final vertex weight w
f

j (vt ).
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Lemma 1. The normalization factor, Z
(j)

2r for each of the three matrix representations,
j = 1, 2, 3, can be written as

Z
(j)

2r =
∑

ω∈P
(j)

2r

W (j)(ω) (2.8)

with

W(j)(ω) = wi
j (v0)

[
2r∏

i=1

w
step
j (ei)

]
w

f

j (v2r ) (2.9)

where P
(1)
2r = P

(J)
2r , P

(2)
2r = P

(C)
2r , and P

(3)
2r = P

(O)
2r , and the weight W(j)(ω) of a particular

path ω with step sequence, E(ω) = e1 · · · e2r is defined, for each of the three cases, as follows.
For j = 1

wi
1((0, 2k + 1)) = ᾱk k ∈ Z

+ (2.10a)

w
step
1 (ei) =

{
β̄ if ei = ((i − 1, 1), (i, 2k)), k ∈ Z

+ and i odd

1 otherwise
(2.10b)

w
f

1 ((2r, 1)) = 1 (2.10c)

for j = 2

wi
2((0, 2k + 1)) = κck k ∈ Z

+ (2.11a)

w
step
2 (ei) = 1 (2.11b)

w
f

2 ((2r, 2k + 1)) = κdk k ∈ Z
+ (2.11c)

and for j = 3

wi
3((0, 1)) = 1 (2.12a)

w
step
3 (ei) =




κ if ei = ((i − 1, 1), (i, 2)) or ei = ((i − 1, 2), (i, 1))

β̄ if ei = ((i − 1, 1), (i, 0))

ᾱ if ei = ((i − 1, 0), (i, 1))

1 otherwise

(2.12b)

w
f

3 ((2r, 1)) = 1 (2.12c)

Proof. The above lemma is a direct consequence of the lattice path interpretation of the Dj

and Ej matrices as transfer matrices. �

The equivalence of the different expressions is a consequence of the invariance
of the normalization factor under similarity transformations relating the different matrix
representations of D and E.

In order to compute Z
(3)
2r , it turns out to be a little more convenient to rearrange the

weights associated with representation three (see figure 5). If we do so we obtain the following
corollary.
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2s

1
α

1
β

1
α

1
β

Figure 6. An example of a canonical path—a separated hovering path with a W(5) weighting.

Corollary 1. An equivalent set of weights for Z
(3)
2r , is

wi
4((0, 1)) = 1 (2.13)

w
step
4 (ei) =




κ1 = ᾱβ̄ if ei = ((i − 1, 0), (i, 1))

κ2 = κ2 if ei = ((i − 1, 2), (i, 1))

1 otherwise

(2.14)

w
f

4 ((0, 1)) = 1. (2.15)

Note. This rearrangement of the weights is only valid for computing Z
(3)
2r . For correlation

functions one has less freedom in the weight rearrangement.
Later in the paper (corollary 7) we will show that the normalization factor can also be

expressed in terms of separated hovering paths.

Z
(5)
2r =

r∑
p=0

∑
ωp∈P

(sH)

2r;2p

W(5)(ωp) (2.16)

where W(5)(ωp) is defined by (2.9) with

wi
5((0, 1)) = 1 (2.17a)

w
step
5 (ei) =




ᾱ if ei = ((i − 1, 2), (i, 1)) and i � 2p

β̄ if ei = ((i − 1, 2), (i, 1)) and i > 2p

1 otherwise

(2.17b)

w
f

5 ((0, 1)) = 1. (2.17c)

Thus, for any particular path, ωp, all the ᾱ weighted steps (if any) occur to the left of vertex
(2p, 1) and all the β̄ weighted steps (if any) occur to the right of (2p, 1). We call this
combination of paths and weights the ‘canonical’ path representation of the normalization
factor. An example is shown in figure 6.

Lemma 2. Let P
(mH)

2r;2p be the set of marked separated hovering paths obtained from P
(sH)

2r;2p by
marking subsets of the steps which return to y = 1 then

Z
(2)
2r =

r∑
p=0

∑
ωp∈P

(mH)

2r;2p

W(2a)(ωp) (2.18)

where the weight W(2a)(ωp) has a factor c for each marked return step which occurs to the
the left of v2p and a factor d for the other marked return steps.
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The lemma is proved in [11] in two stages. First an involution on P
(C)
2r for which P

(aC)
2r

is the fixed set and then a bijection between P
(aC)
2r and

⋃r
p=0 P

(mH)

2r;2p .

Corollary 2.

Z
(2)
2r = Z

(5)
2r

∣∣
ᾱ=1+c,β̄=1+d

Proof. Substituting ᾱ = 1 + c, β̄ = 1 + d in the weight attached to a path ωp ∈ P
(sH)

2r;2p and
expanding leads to a sum of terms obtained by weighting each return step to the right of v2p

(if any) with either 1 or d and the remaining returns (if any) by 1 or c. Marking the subsets of
steps weighted c or d determines a set of paths belonging to P

(mH)

2r;2p . �

3. Methods

In this section, we briefly review methods to be used and results obtained previously [12] as
they will be required in the following section. One additional new lemma is stated.

3.1. The constant term method

Definition 9. The constant term operation, CT[·], is defined by

CT[f (z)] = the constant term in the Laurent expansion of f (z) about z = 0.

The number of t-step lattice paths with step set SD
i which begin at (0, 0) and end at (t, y)

with no further constraint (i.e. replacing the constraint y ∈ Z
+ in the definition of � by y ∈ Z)

is the binomial coefficient
(

t
1
2 (t−y)

)
for which the constant term formula is(

t
1
2 (t − y)

)
= CT [(z + 1/z)t zy]. (3.1)

By the reflection principle [13], the number of t-step ballot paths of height h is obtained
by subtracting the number of unrestricted paths which begin at (0,−2) from those beginning
at (0, 0), both ending at (t, h).

Bt,h ≡ ∣∣P (B)

t;h
∣∣ = CT[(z + 1/z)tzh] − CT[(z + 1/z)t zh+2] = CT[	tzh(1 − z2)] (3.2)

where 	 = z + 1/z. Differencing the binomial coefficients expresses Bt,h in terms of
factorials; for t + h even

Bt,h = (h + 1)t!(
1
2 (t + h) + 1

)
!
(

1
2 (t − h)

)
!
. (3.3)

Dyck paths are ballot paths ending at (t, 0) so the number Dyck paths with 2r steps is∣∣P (D)
2r

∣∣ = CT[	t(1 − z2)] = 1

r + 1

(
2r

r

)
= Cr (3.4)

a Catalan number.
Instead of using the reflection principle the ballot numbers may be obtained as the solution

of the equations, t, h � 1,

B0,h = δh,0 (3.5a)

Bt,0 = Bt−1,1 (3.5b)

Bt,h = Bt−1,h−1 + Bt−1,h+1 (3.5c)

all of which are solved by CT[	tzh(1 − z2)].
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Historically, ballot numbers arise in the combinatorial problem of a two candidate election.
If you ask how many ways can t votes be cast such that the first candidate ends h votes ahead
of the second candidate and at any stage of the voting never has fewer votes that the second
candidate.

3.2. Partition function for the one contact model

Previously [12] we proved the following proposition concerning the return polynomial (see
definition 2.1).

Proposition 1. The return polynomial for ballot paths of length t and height h is given by

Rt(h; κ) = CT

[
	tzh(1 − z2)

1 − (κ − 1)z2

]
. (3.6)

Proof. For t, h � 1, Rt (h; κ) is determined by the recurrence relations

R0(h; κ) = δh,0 (3.7a)

Rt(0; κ) = κRt−1(1, κ) (3.7b)

Rt(h; κ) = Rt−1(h − 1; κ) + Rt−1(h + 1; κ). (3.7c)

The first and last equations are the same as for the unweighted ballot paths and are satisfied by
CT[	tzh(1 − z2)g(z)] provided that on expansion g(z) has no negative powers and g(0) = 1
(which will be the case). We have introduced the factor g(z) to allow the second equation to
be satisfied. But z + 1/z = κz + (1 − (κ − 1)z2)/z and choosing g(z) = 1/(1 − (κ − 1)z2)

CT[	t(1 − z2)g(z)] = CT[	t−1(z + 1/z)(1 − z2)g(z)]

= κ CT[	t−1z(1 − z2)g(z)] + CT[	t−1(1/z − z)].

The result follows since the last term may be evaluated to give zero. �

Corollary 3 ([12]).

Rt(h; κ) =
1
2 (t−h)∑
m=0

Bt,h+2m(κ − 1)m =
1
2 (t−h)∑
m=0

Bt−m−1,m+h−1κ
m. (3.8)

Proof. The first equality follows by expanding (3.6) in powers of (κ − 1)z2 and using (3.2).
The second is obtained by rewriting the constant term formula as

Rt(h; κ) = CT

[
	t−1zh−1(1 − z2)

1 − κz/	

]
(3.9)

and then expanding in powers of κz/	. This result suggests a bijection between ballot paths
of length t with m returns and ballot paths of length t − m − 1 and height m + h − 1 and
hence suggests a combinatorial proof. Such a bijection was given in [14]. A ballot path can
be represented schematically as shown in figure 7. The bubbles (see definition 3) represent an,
possibly empty, arbitrary elevated Dyck path. Using this schematic representation, proving
(3.8) is then straightforward. For simplicity we show the bijection in the case h = 0 in figure 8.
The expansion in powers of κ − 1 was also obtained by bijection in [14]. In this case the
bijection is between ballot paths with at least m returns, m of which are marked, and ballot
paths of the same length but of height h + 2m (see figure 9). �
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t

(a) (b)

h

t

h

Figure 7. (a) An example of a ballot path showing the ‘terraces’ which define the bubbles shown
schematically in (b) which represents of a ballot path of length t and height h = 4.

return edge
m returns

(b)(a) (c)

delete
delete

2r −2r m − 12r m−

m − 1m

Figure 8. (a) Schematic representation of a Dyck path with m = 3 returns. (b) All return steps
deleted. (c) First step deleted produces a ballot path of height m − 1 and length 2r − m − 1.

t

m marked returns (b)

(c)

(a)

t

h

2m + h

rotated up

t

Figure 9. (a) An example of a marked return ballot path of height h = 1 with m = 2 marked
returns and (b) its schematic representation in terms of bubbles. (c) Each marked return rotated
through 90◦ anti-clockwise (or equivalently replaced by an up step) producing a ballot path of
height 2m + h and length t.

The above methodology is typical of that used for the more complicated two-parameter
case in the following section. A constant term formula will be derived and then rewritten
in four different ways each giving rise to an expansion in pairs of different variables the
coefficients of which are ballot numbers and are shown, by bijection, to enumerate various
types of lattice path.

In the following section we will also need the following lemma.

Lemma 3. Let P
(sH)

2r;2s be the set of separated hovering paths (definition 7) then
r∑

s=0

∣∣P (sH)

2r;2s

∣∣ = ∣∣P (D)
2r+2

∣∣. (3.10)
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(a) (c)(b)

marked contact edge at markinserted added edge

Figure 10. (a) Dyck (or hovering) path with one marked contact, (b) insert an up step at the mark
produces a unique height one ballot path (length 2r + 1) and (c) adding a final down step produces
a unique Dyck path of length 2r + 2.

Proof. Since we can shift any hovering path down on to the x-axis to give a Dyck path with
vertex (2s, 0) marked, the lemma says the number of Dyck paths with one contact marked is
equal to the number of (unmarked) Dyck paths two steps longer. A sketch of the bijective
combinatorial proof is shown in figure 10. The construction is a bijection, since, given any
length 2r +2 Dyck path a unique length 2r marked contact Dyck path is determined by deleting
the rightmost step and the rightmost step from y = 0 to y = 1 (and marking the left vertex of
the latter step). �

4. The two-contact model

We begin by computing Z
(3)
2r using the W(4) weights—we will refer to this as the two contact

model. We will generalize the model by allowing arbitrary starting and ending heights for the
paths. In particular, let the paths be of length t, start at (0, yi) with yi ∈ Zodd and terminate at
(t, yf ), t + yf ∈ Zodd, i.e. cross paths in P

(C)

t;yi ,yf .
This model can also be thought of as a polymer model with two different surface

interactions, or ‘contacts’. The path interacts with the ‘thickened’ surface y = 0, 1 via
two parameters, κ1 and κ2 and the partition function is defined by

Zt(y
f |yi; κ1, κ2) =

∑
ω∈P

(C)

t;yi ,yf

W (4)(ω) (4.1)

where the sum is over cross paths of length t with given initial and final heights yi and yf

and the weight W(4)(ω) is defined by (2.9) and (2.13). This is a generalization of the ASEP
partition function Z

(3)
2r thus

Z
(3)
2r = Z2r (1|1; ᾱβ̄, κ2). (4.2)

This generalization allows this partition function to be determined by recurrence relations
similar to those for the return polynomial of ballot paths. By considering paths of length t − 1
which can reach the point (t, y) by adding one more step the partition function Zt (y

f |yi; κ1, κ2)

may be seen to satisfy the equations,

Z1(1|yi; κ1, κ2) = 0 (4.3)

Z0(y|yi; κ1, κ2) = δy,yi (4.4)

Zt(0|yi; κ1, κ2) = Zt−1(1|yi; κ1, κ2) (4.5)

Zt(1|yi; κ1, κ2) = κ1Zt−1(0|yi; κ1, κ2) + κ2Zt−1(2|yi; κ1, κ2) t � 2 (4.6)

and for t = 1, 2, . . .; y = 2, 3, . . . and t + y odd

Zt(y|yi; κ1, κ2) = Zt−1(y − 1|yi; κ1, κ2) + Zt−1(y + 1|yi; κ1, κ2). (4.7)
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These partial difference equations can be solved for Zt(y
f |yi; κ1, κ2) by using the constant

term method.

Proposition 2. With κ̄i = κi − 1, z̄ = 1/z and 	 = z + z̄, for yi ∈ Zodd and y � 1

Zt(y|yi; κ1, κ2) = CT
[
	t
(
zy−yi − zy+yi−2)] + (δyi ,1 + κ2(1 − δyi ,1))CT

[
zy+yi−2	tG(z)

]
(4.8)

where

G(z) = (1 − z2)z	

1 − (κ̄1 + κ̄2)z2 − κ̄2z4
. (4.9)

Note. For yi = 0 and y � 1

Zt(y|0; κ1, κ2) = κ1Zt−1(y|1; κ1, κ2). (4.10)

Proof. Substituting (4.8) into the partial difference equations and noting that G(z) may be
expanded in even powers of z with no inverse powers shows that (4.3), (4.4) and (4.7) are
satisfied. Equation (4.5) may be taken as the definition of Zt(0|yi; κ1, κ2) and (4.6) may then
be transformed into

Zt(1|yi; κ1, κ2) = κ1Zt−2(1|yi; κ1, κ2) + κ2Zt−1(2|yi; κ1, κ2) t � 2. (4.11)

To verify that this equation is also satisfied we note that

	2G(z) = 	(1/z − z) + (κ1 + κ2z	)G(z). (4.12)

In the case yi = 1 this gives

Zt(1|1; κ1, κ2) = CT[	tG(z)] = CT[	t−1(1/z − z)]

+ κ1Zt−2(1|yi; κ1, κ2) + κ2Zt−1(2|yi; κ1, κ2)

and (4.11) follows since the first term is zero.
Otherwise yi = 3, 5, . . . in which case

Zt−1(2|yi; κ1, κ2) = CT
[(

z2−yi − zyi )
	t−1

]
+ κ2CT

[
zyi

	t−1G(z)
]

and using this together with (4.12) and the fact that the first term in (4.8) vanishes when y = 1

Zt(1|yi; κ1, κ2) = κ2CT
[
zyi−1	tG(z)

]
= κ2CT

[
zyi−1(1/z − z)	t−1

]
+ κ1Zt−2(1|yi; κ1, κ2) + κ2

2 CT
[
zyi

	t−1G(z)
]

= κ2CT
[(

zyi−2 − (1/z)y
i−2
)
	t−1

]
+ κ1Zt−2(1|yi; κ1, κ2)

+ κ2Zt−1(2|yi; κ1, κ2)

and again (4.11) follows since the first term evaluates to zero.
An alternative constructive proof of this proposition is given in appendix B. �
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Corollary 3. The number of t-step cross paths which begin at vi = (0, h1) and end at
vf = (t, h2) is given by

Zt(h2|h1; 1, 1) =
(

t
1
2 (t − h2 + h1)

)
−
(

t
1
2 (t − h2 − h1) − 1

)
(4.13)

in terms of which we can write, Zt(y|yi; κ1, κ2) as

Zt(y|yi; κ1, κ2) = Zt(y − 2|yi − 2; 1, 1) + (δyi,1 + κ2(1 − δyi,1))Z
a
t (y|yi; κ1, κ2) (4.14)

where

Za
t (y|yi; κ1, κ2) = CT

[
	tzy+yi−2G(z)

]
(4.15)

is the partition function restricted to anchored cross paths except that for yi > 1 the step
leading to the first visit to y = 1 has weight 1.

In particular

Zt(y|1; κ1, κ2) = Za
t (y|1; κ1, κ2) = CT[	tG(z)zy−1]. (4.16)

Notes:

• It follows from the constant term formula that

Za
t (y|yi; κ1, κ2) = Zt(y + yi − 1|1; κ1, κ2). (4.17)

• Setting κ1 = κ2 = 1 gives the number of unweighted paths starting at height 1.

Zt(y|1; 1, 1) = CT[	t(1 − z4)zy−1) = CT[	t+1(1 − z2)zy] = Bt+1,y

as expected since the paths biject to ballot paths by adding an initial up step.

Proof. With κ1 = κ2 = 1,G(z) = 1 − z4 and substituting in (4.8) gives

Zt(y|yi; 1, 1) = CT
[
	t
(
zy−yi − zy+yi+2

)]
(4.18)

which yields (4.13).
Zt(y − 2|yi − 2; 1, 1) is the number of cross paths which avoid y = 1. This follows

since such paths are in simple bijection with the paths starting at height yi − 2 and ending
at height y − 2, e.g. just push the whole path down (or up) two units. The second term in
(4.14) is therefore the partition function for anchored cross paths. In the case yi > 1 anchored
cross paths always have a first visit to y = 1 and the step leading to this visit has a factor
κ2. Removing this factor leaves Za

t (y|yi; κ1, κ2) which is therefore the partition function for
anchored cross paths except that for yi > 1 the step leading to the first visit to y = 1 has
weight 1. Setting yi = 1 in (4.14) gives (4.16) since the first term vanishes. �

Corollary 5.

Za
t (y|yi; κ1, κ2) = CT

[
(1 − z2)	t−1zy+yi−3

1 − (κ1 + z	κ2)(z/	)2

]
(4.19)

=
(t−y−yi )/2+1∑

j=0

(t−y−yi )/2−j+1∑
k=0

κ
j

1 κk
2

(
j + k

k

)
Bt−2j−k−1,y+yi+k−3. (4.20)

Note. When y = yi = 1 and j = t/2, k = 0 the coefficient B−1,−1 is indeterminate but
setting B−1,−1 = 1 gives the correct answer. This corresponds to the path which alternates
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κ2κ1 κ1

κ2 κ2κ1

Figure 11. Schematic representation of a one-up path corresponding to the return sequence
κ2

1 κ2
2 κ1κ2.

(a)
delete

delete

delete

k + 1

k − 1 k

(b)

(c)(d)

t − k

t − k − 1 − 2j t − k − 1

κk
2 :
κj

1 :

Figure 12. Bijection of first example sequence in figure 11 to a ballot path: (a) delete all κ2 return
steps, then (b) delete first up step above y = 1, then (c) delete all steps originally below y = 1, to
give (d ) the final ballot path.

between y = 0 and y = 1. Note that replacing the factorials in the definition of Bt,h by
Gamma functions gives Bt,t = 1 for all t > −1.

Proof. Rewrite G(z) in the form

G(z) = 1 − z2

(z	)(1 − (κ1 + z	κ2)(z/	)2)

expand in powers of κ1 and κ2 and use the CT formula (3.2) for ballot numbers.
Equation (4.20) may also be proved by a combinatorial argument. To simplify the proof

we only consider the ASEP case y = yi = 1. The extension to general y, yi is straightforward.
Recall that, from the weight definition, (2.13), the returns to y = 1 are weighted with κ1 or
κ2 depending on whether the return is from below or from above y = 1. The binomial
coefficient corresponds to choosing a particular sequence of κ1 and κ2 weighted returns. For
each particular sequence of returns we need to show there are Bt−2j−k−1,k−1 possible path
configurations.

We first represent a particular sequence schematically and then show any path
corresponding to the schematic can be bijected to a ballot path with the correct height and
length. Schematically an example of a particular sequence of κ1 and κ2 returns is shown in
figure 11.

We now perform three operations to biject a given sequence into a ballot path.

• First delete all κ2 return steps, see figure 12(a). This produces a path of length t − k and
height k + 1.

• Next, delete the first up step above y = 1 (if any—which is the case if k > 0), see
figure 12(b). This produces a path of length t − k − 1 and height k.

• Finally, delete all 2j steps originally below y = 1, see figure 12(c). This produces a
ballot path of length t − k − 1 − 2j and height k − 1 as required.
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(a) (c)(b)

(d) (e) (f)

κ̄2

κ̄1

κ̄2

κ̄1

Figure 13. (a) Schematic one-up path or ‘frying pan’ with no steps marked. (b) Schematic one-up
path with only the last step κ̄1 marked. (c) Schematic one-up path with only the last step κ̄2 marked.
(d ) An example showing how the schematic frying pan represents a, possibly empty, one-up path.
(e) An example showing a frying pan followed by a down step and an up step (which forms a κ̄1
marked return). ( f ) An example showing a frying pan followed by an up step, then a bubble then
a final down step (which forms a κ̄2 marked return).

Given the sequence of κ1 and κ2 the reverse direction for the bijection is obtained by simply
reversing the forward mapping—see figure 12. �

Corollary 6.

Za
t (y|yi; κ1, κ2) =

(t−y−yi )/2+1∑
j=0

(t−y−yi )/2−j+1∑
k=0

κ̄
j

1 κ̄k
2

(
j + k

k

)
Bt+k+1,y+yi+2j+3k−1. (4.21)

Proof. Rewrite G(z) in the form

G(z) = (1 − z2)z	

1 − (κ̄1 + z	κ̄2)z2

expand in powers of κ̄1 and κ̄2 and use the CT formula (3.2) for ballot numbers.
As with corollary 5, the result, (4.21), may also be proved combinatorially as follows.

Again, in order to simplify the proof we consider only the ASEP case y = yi = 1. The
substitution κi = 1 + κ̄i means that a return which was weighted with κi is now weighted with
either κ̄i or 1. The factor(

j + k

k

)
Bt+k+1,2j+3k+1 (4.22)

is the number of paths with a subset of exactly j of the returns from below marked and exactly
k of the returns from above marked corresponding to the choice of weight κ̄i or 1. The binomial
coefficient in (4.22) is the number of ways of choosing a particular sequence of κ̄1 and κ̄2

weighted marks (reading the path from left to right), whilst, for a given sequence, the ballot
number represents the number of paths corresponding to the sequence. The most general
path corresponding to a given sequence can be represented schematically by concatenating
the corresponding schematic sub-paths shown in figures 13(b) and (c) with a final ‘frying pan’
shown in figure 13(a). Examples of sub-paths corresponding to the three types of schematics
are illustrated in figures 13(d)–13( f ). Note, the shaded regions of the schematics represent
any number (possibly zero) of steps. Examples of two possible sequences are illustrated in
figure 14.

Thus, for a given return sequence we need to show that there are Bt+k+1,2j+3k+1 return
marked paths. Without loss of generality we choose a typical sequence and represent it
schematically as shown in figure 14.
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(a)

(b)

κ̄2
κ̄1

κ̄2
κ̄1

κ̄2
κ̄1 κ̄1 κ̄1 κ̄1

Figure 14. Schematic κ̄1–κ̄2 marked hovering path. (a) For the sequence κ̄2κ̄1κ̄1κ̄2 and (b) for the
sequence κ̄1κ̄1κ̄2κ̄1κ̄1.

(a) (b) (c)

added edge

Figure 15. Bijection of a ‘frying pan’ to a height one ballot path. The final path is one step longer
than the original.

(a)

(c)

(b)

(d) rotated last mark

added edge
κ̄2

Figure 16. Bijection of a κ̄2 schematic to a height two ballot path, with a final up step. The final
path is one step longer than the original.

Thus to prove the ballot number factor in (4.22) we need to biject any schematic marked
return sequence to a ballot path of length t + k + 1 and height 2j + 3k + 1. We do this by
bijecting each schematic in the sequence to a sub-ballot path (plus, possibly, an extra step) and
then concatenate them all together.

• Thus, the last frying pan, of length say, 2r ′, bijects to a height 1, length 2r ′ + 1 ballot
path—see figure 15.

• A marked κ̄2 schematic of length 2r1 bijects to a height 2, ballot path with an additional
final up step (see figure 16). The final length is 2r1 + 1 as an extra step has to be added.

• Finally, a marked κ̄1 schematic of length 2r2 bijects to a height 1, ballot path with an
additional final up step (see figure 17). The final length is unchanged.

Putting these moves all together is illustrated in figure 18, which shows clearly that a ballot
path of length t + k + 1 and height 2j + 2k + k + 1 is obtained. �

An explicit evaluation of the partition function of the canonical path representation,
defined by (2.16), is the case yi = yf = 1 of the following result.



Asymmetric exclusion model and weighted lattice paths 4201

rotate

move edge to front

edge
(a) (c)(b)

κ̄1

Figure 17. Bijection of a κ̄1 schematic to a height one ballot path, with a final up step.

(a)

(c)

(b)

(d)

move edge

added edge

added edgeadded edge

rotated edge rotated edge

move edge

1 + 3k + 2j

t

t

t + k + 1

t + k + 1

κ̄j
1 :

κ̄k
2 :

1 + 2j

1 + 2j + k

Figure 18. Bijection between a one-up path with a given sequence of marked κ̄1 and κ̄2 steps and a
ballot path. (a) The marked one-up path. (b) After the application of move illustrated in figure 17.
(c) After the application of move illustrated in figure 16. (d ) Final ballot path after rotating the
remaining marks.
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Corollary 7. With κ1 = ᾱβ̄ and κ2 = ᾱ + β̄ − ᾱβ̄

Za
t (y

i |yf ; κ1, κ2) =
1
2 (t−yi−yf )+1∑

m=0

Bt−m−1,m+yi+yf −3
ᾱm+1 − β̄m+1

ᾱ − β̄
(4.23)

=
1
2 (t−yi−yf )+1∑

m=0

Bt−m−1,m+yi+yf −3

m∑
j=0

ᾱj β̄m−j . (4.24)

Notes:

• For the ASEP model (yi = yf = 1, t = 2r) with r � 1, (4.24) reduces to the result of
Derrida et al [1], equation (39)

Z2r (1|1; κ1, κ2) =
r∑

m=1

m(2r − m − 1)!

r!(r − m)!

m∑
j=0

ᾱj β̄m−j = Z
(5)
2r (4.25)

which they obtained directly from the algebra (1.3) ([1] appendix A.1, equation (A.12))
without the use of a matrix representation. An equivalent formula was also given by
Liggett [15], p 252, as part of his expression for the current [1] cr = Z2r−2/Z2r . In his
notation Z2r = (ᾱβ̄)nhr(α, β) and α = λ, β = 1 − ρ.

• An equivalent formula was also given by Schutz and Domany [16], equation (2.17). They
solved the recurrence relations of Derrida, Domany and Mukamel [17] who only obtained
an exact solution in the special case α = β = 1. A similar recurrence relation was given
by Liggett [15].

• The result for the ASEP model may be written in terms of the return polynomial for ballot
paths, thus

Z2r (1|1; κ1, κ2) =
r∑

j=0

ᾱj

r−j∑
�=0

B2r−j−�−1j + � − 1β̄�

=
r∑

j=0

R2r−j (j ; β̄)ᾱj . (4.26)

This formula may also be derived using a path representation based on the recurrence
relations of Derrida, Domany and Mukamel [17].

Proof. By definition of ᾱ and β̄

1 − (κ̄1 + κ̄2)z
2 − κ̄2z

4 = [1 − (ᾱ − 1)z2][1 − (β̄ − 1)z2] = z2(	 − ᾱz)(	 − β̄z) (4.27)

and from (4.9)

G(z) = (1 − z2)z̄	

(	 − ᾱz)(	 − β̄z)
= (1 − z2)z̄2

ᾱ − β̄

(
1

1 − ᾱz/	
− 1

1 − β̄z/	

)
. (4.28)

The result follows by expanding in powers of ᾱ and β̄, substituting in (4.15) and using the CT
formula (3.2) for ballot numbers.

In the ASEP case yi = yf = 1, t = 2r the coefficient B2r−m−1,m−1 in (4.24) is equal to
the number of Dyck paths with m returns to y = 0 (see (3.8)). The equality of Z2r (1|1; κ1, κ2)

with Z
(5)
2r , defined by (2.16), follows by raising the Dyck paths so that they become hovering

paths ω ∈ P
(H)
2r with returns to y = 1. The factor ᾱj β̄m−j in (4.24) corresponds to weighting

the first j returns of ω with ᾱ and the remainder with β̄. The sum over s in (2.16) is obtained
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by partitioning the weighted paths according to the position (2s, 1) of the j th return (i.e. the
separation vertex).

The equality of Z
(3)
2r and Z

(5)
2r is also shown directly in [11] by involution. �

Corollary 8. Let ᾱ = c + 1 and β̄ = d + 1 then κ1 = (c + 1)(d + 1), κ2 = 1 − cd and

Za
t (y|yi; κ1, κ2) =

(t−y−yi+2)/2∑
m=0

Bt+1,y+yi+2m−1

m∑
j=0

cjdm−j (4.29)

=
(t−y−yi+2)/2∑

m=0

Bt+1,y+yi+2m−1
(cm+1 − dm+1)

c − d
(4.30)

in particular, in the ASEP case

Z2r (1|1; (c + 1)(d + 1), 1 − cd) = Z
(2)
2r =

r∑
m=0

B2r+1,2m+1

m∑
j=0

cjdm−j . (4.31)

Note. Equation (4.31) is not given in [1] but (34) and (35) of [1] together give the related
formula

〈W |Cr |V 〉 = (1 − cd)

∞∑
i=1

∞∑
j=1

((
2r

r + i − j

)
−
(

2r

r + i + j

))
ci−1dj−1. (4.32)

This expression involves an infinite series whereas our expression is finite. By corollary 4 the
coefficient in (4.32) is the number of cross paths of length 2r with h1 = 2i−1 and h2 = 2j −1
and the double sum extends over P

(C)
2r . The factor 1 − cd restricts the sum to anchored cross

paths. The equivalence of (4.32) and (4.31) is shown in [11] by constructing an involution on
P

(C)
2r having P

(aC)
2r as is its fixed point set.

Proof. From (4.27)

1 − (κ̄1 + κ̄2)z
2 − κ̄2z

4 = (1 − cz2)(1 − dz2)

and substitution in (4.9) gives

G(z) = (1 − z2)z	

(1 − cz2)(1 − dz2)
. (4.33)

The result follows from (4.15) using the expansion

1

(1 − cz2)(1 − dz2)
= 1

c − d

(
c

1 − cz2
− d

1 − dz2

)
(4.34)

expanding in powers of z and using the CT formula (3.2) for ballot numbers.
Again a combinatorial proof is possible which for simplicity we only give in the ASEP

case. The equality with Z
(2)
2r follows from corollary 1. To obtain the ballot number formula

we obtain a bijection between
⋃r

s=0 P
(mH)

2r;2s and the set of ballot paths of length 2r + 1 and
height h = 2m + 1.

An example of the schematic representation of a path ωs ∈ P
(mH)

2r;2s with a given number
of c and d marked return steps and a separating vertex v2s is shown in figure 19. As there are
no steps below y = 1 we have pushed the hovering path down by unit height and consider it
as a Dyck path.

As in the proof of lemma 3, inserting an up step in each path at the position of v2s and
taking the union over all possible positions of v2s starting at the last c return and up to but not
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dc c d

separating vertex

Figure 19. An example of a schematic representation of a Dyck path with a given number of c and
d marked returns and a marked separating vertex v2s .

dc c d

sum on position

2r

2r + 1

2m + 1

2r + 1

(a)

(b)

(c)

Figure 20. (a) Taking the union over positions of the marked separating vertex produces a
schematic height one ballot path as in (b), replacing each marked c and d return by an up step
produces a ballot path of length 2r + 1 and height 2m + 1 as in (c).

including the first d return (or from the beginning if there are no c returns and to the end if
there are no d returns) replaces the pair of bubbles on either side of the separating vertex by
the set ballot paths of height one and one step longer, see figures 20(a) and (b). Replacing
each marked return step with an up step (and hence increasing the height of the path by 2
each time) then produces a ballot path of length 2r + 1 and height 2m + 1 as required, see
figure 20(c). �

Corollary 9.

Z2r (1|1; κ1, κ2) = −1

2
(1 − cd)CT

[
	2r (z2 − z̄2)2

((1 + c)2 − c	2)((1 + d)2 − d	2)

]

Note. This converts to the integral formula of Derrida et al [1] (B.10) with z2 = eiθ and using
a contour integral to pick out the constant term. It is related to the ω expansion (see later).
Equation (B.10) was obtained by finding the eigenvectors of C2 and is therefore an evaluation
of Z(2).
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Proof. With w ≡ z2 in (4.33) and using (4.16)

Z2r (1|1; κ1, κ2) = CT

[
	2r (1 − w2)

(1 − cw)(1 − dw)

]
.

Now symmetrize the denominator by multiplying numerator and denominator by (1 − cw̄)

(1 − dw̄).
The result follows using

(1 − w2)(1 − cw̄)(1 − dw̄) = 1 − cd − w2 + cdw̄2 + (c + d)(w − w̄).

Because the rest of the expression is now symmetric the contribution from the last term
vanishes by replacing w̄ by w and both w2 and w̄2 can be replaced by (w2 + w̄2)/2. �

5. The ‘ω’ expansion and phase diagram of the ASEP model

With ωc = c/(1 + c)2 corollary 9 may be written in the form

Z2r (1|1; κ1, κ2) = ωc − ωd

c − d
CT

[
	2r+2(1 − z2)

(1 − ωc	2)(1 − ωd	2)

]
(5.1)

which may be expanded to give

Z2r (1|1; κ1, κ2) = Z2r (ωc) − Z2r (ωd)

c − d
(5.2)

where

Z2r (ω) = CT

[
	2r (1 − z2)

1 − ω	2

]
. (5.3)

The asymptotic form of Z2r (ω) as r → ∞ was obtained in [18] and will now be used
to study the phase diagram for the ASEP model. First we outline the method by which the
asymptotic form was obtained.

Note that expanding the factor (1−ω	2)−1 in (5.3) in powers of ω gives an infinite series
which is only valid for c � 1 which is the point at which ω as a function of c passes through
its maximum value 1

4 . Instead we use (5.3) to obtain a recurrence relation. Thus noting that

ω	2r

1 − ω	2
= −	2r−2 +

	2r−2

1 − ω	2

and substituting in (5.3) gives

ωZ2r (ω) = −Cr−1 + Z2r−2(ω) (5.4)

where Cr is the Catalan number, (3.4). Solving (5.4) with Z2 = (1 + c)2 gives

Z2r (ωc) = ω−r
c


1 + c −

r−1∑
j=0

Cjω
j
c


 (5.5)

which on substituting for ωc in terms of c must give a polynomial in c. Comparing this with
[18] equation (3.59) it may be seen that Z2r (ωc) is the contact polynomial ẐS

2r (ᾱ) for Dyck
paths of length 2r .

For the ASEP model ωc = α(1 − α) and
∞∑

j=0

Cjω
j
c = 1 − √

1 − 4ωc

2ωc

= 1 − |1 − 2α|
2α(1 − α)

=
{

1
α

α > 1
2

1
1−α

α � 1
2
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so

Z2r (ωc) = ω−r
c


 1

α
−

 ∞∑

j=0

Cjω
j
c −

∞∑
j=r

Cjω
j
c




 (5.6)

= ω−(r+1)
c (1 − 2α)θ(1 − 2α) +

∞∑
j=r

Cjω
j−r
c (5.7)

where θ(·) is the unit step function. This is [18] equation (3.61).
The asymptotic form for r → ∞ was obtained using

Cr ∼ 4r

√
πr3/2

and may be written

Z2r (ωc) ∼




f<(α) = 1−2α
ωr+1

c
α < 1

2

f= = 2√
π

4r

r
1
2

α = 1
2

f>(α) = 4r

√
πr

3
2

(1 − 4ωc)
−1 α > 1

2 .

(5.8)

These results agree with [1] equations (48)–(50). A similar analysis has been given by Liggett
[8] using a recurrence relation equivalent to (5.4).

Note. That in [18] the contact polynomial for Dyck paths was the partition function for
a polymer chain attracted to a surface. There the factor 1 − 4ωc in (5.8) was replaced by
log(1/4ωc) which arose from approximating the sum in (5.7) by an integral. Although this
gives the correct scaling behaviour near the binding transition of the polymer chain which
occurs at ᾱ = 1

2 , it breaks down near ᾱ = 1.
In the phase diagram there are therefore

• three special regions R1 = {
α > 1

2 , β > 1
2

}
, R2 = {

α > β, β < 1
2

}
, R3 = {

α < β, α <
1
2

}
; the partition function in R3 is obtained from that in R2 by interchanging α and β;

• three special lines L1 = {
α = β < 1

2

}
, L2 = {

β = 1
2 , α > 1

2

}
, L3 = {

α = 1
2 , β > 1

2

}
,

the partition function on L3 is obtained from that on L2 by interchanging α and β;
• a special point where the lines meet P = {

α = 1
2 , β = 1

2

}
.

Table 1 shows the asymptotic form of Z2r (1|1; κ1, κ2) for the above cases.

6. Recurrence relations for the partition function and correlation functions

6.1. Recurrence relations for the partition function

The various formulae for G(z) when substituted in (4.16) yield recurrence relations for
Zt(y|1; κ1, κ2). For example, using the identity

1

(1 − ωc	2)(1 − ωd	2)
= 1 +

(ωc + ωd)	
2 − ωcωd	

4

(1 − ωc	2)(1 − ωd	2)

substitution in (5.1) and using the CT formula (3.4) for Catalan numbers leads to, for
r = 0, 1, . . .

Z2r (1|1; κ1, κ2) = ωc − ωd

c − d
Cr+1 + (ωc + ωd)Z2r+2(1|1; κ1, κ2)

−ωcωdZ2r+4(1|1; κ1, κ2). (6.1)
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R1

R2

L2

L1

L3

P
R3

α

β

Figure 21. The various regions of the ASEP phase diagram.

Table 1. Asymptotic forms of Z2r (1|1; κ1, κ2) in the regions defined in the phase diagram in
figure 21.

R3 : f<(α)

ᾱ−β̄
L3 : f=

2−β̄
R1 : f>(α)−f>(β)

ᾱ−β̄

P : 4r L2 : f=
2−ᾱ

L1 : −α2f ′
<(α) ∼ r(1−2α)2

ωr+2
c

R2 : f<(β)

β̄−ᾱ

Substitution in terms of κ1 and κ2 yields, for r = 2, 3, . . .

(κ2 − 1)Z2r (1|1; κ1, κ2) = (κ2(κ1 + κ2) − 2κ1)Z2r−2(1|1; κ1, κ2)

+ κ2
1 Z2r−4(1|1; κ1, κ2) − κ2Cr−1 (6.2)

which may be initialized by Z0(1|1; κ1, κ2) = 1 and Z2(1|1; κ1, κ2) = κ1 + κ2.
The following identity:

1

(1 − ᾱz/	)(1 − β̄z/	)
= 1 +

(ᾱ + β̄)z/	 − ᾱβ̄z2/	2

(1 − ᾱz/	)(1 − β̄z/	)

when substituted in (4.28) gives, using the CT formula (3.2) for ballot numbers, for
y = 1, 2, . . . and odd t + y � 3

Zt(y|1; κ1, κ2) = Bt−1,y−2 + (ᾱ + β̄)Zt−1(y + 1|1; κ1, κ2) − ᾱβ̄Zt−2(y + 2|1; κ1, κ2) (6.3)

which relates partition functions on lines of constant t + y. The partition function for y = 1
is determined by (6.1) and the following proposition then determines Zt(2|1; κ1, κ2) which
provides the initial condition for (6.3).

Proposition 3. For r = 1, 2, . . .

ᾱZ2r−1(2|1; κ1, κ2) = Z2r (1|1; κ1, κ2) − Z2r (1|1; 0, β̄).
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2i1 2i3 2i4

up

up
up

up

2i2−1 −1 −1 −1

Figure 22. The n-point correlation path interpretation (n = 4 is shown above): each step starting
at x = 2ik − 1, k = 1, . . . , n must be an up step with weight one.

Proof. From corollary 7, for r = 1, 2, . . .

Za
2r (1|1; κ1, κ2) =

r∑
m=1

B2r−m−1,m−1

m∑
i=1

ᾱi β̄m−i +
r∑

m=1

B2r−m−1,m−1β̄
m

= ᾱ

r−1∑
m=0

B2r−m−2,m

m∑
i=0

ᾱi β̄m−i + Z2r (1|1; 0, β̄)

and the result follows from corollary 7 with t = 2r − 1, y = 2. �

Finally, substituting the identity

1

(1 − cz2)(1 − dz2)
= 1 +

(c + d)z2 − cdz4

(1 − cz2)(1 − dz2)
(6.4)

in (4.33) and using (4.16) leads to the recurrence, for t = 0, 1, 2, . . . , and odd t + y � 1

Zt(y|1; κ1, κ2) = Bt+1,y + (c + d)Zt (y + 2|1; κ1, κ2) − cdZt (y + 4|1; κ1, κ2) (6.5)

which relates partition functions along lines of constant t and may be initialized using the
above relations to find the partition functions for y = 1, 2, 3 and 4.

6.2. Recurrence relations for the correlation functions of the ASEP model

The probability of finding particles at positions i1, i2, . . . , in is, using (1.1),

Pr
(
τi1 = 1, τi2 = 1, . . . , τin = 1

) = Gn(i1, i2, . . . , in; r)

Z2r (1|1; ᾱβ̄, κ2)
(6.6)

where the un-normalized n-point correlation function Gn(i1, i2, . . . , in; r) is given by [1]

Gn(i1, i2, . . . , in; r) = 〈W |Ci1−1DCi2−i1−1D · · · Cin−in−1−1DCr−in |V 〉. (6.7)

where C = DE. This expression may be thought of as replacing C by D in 〈W |Cr |V 〉 at
each of the positions ik, k = 1, . . . , n which is equivalent to replacing the Ej matrix in a
Cj = DjEj product by a unit matrix. Thus in the path representations Gn(i1, i2, . . . , in; r) is
obtained by modifying the allowed step definition such that for k = 1, . . . , n, the step sk ≡ e2ik

(beginning at x = 2ik − 1 and ending at x = 2ik) is always an up step and has weight 1. We
will say that sk is a forced up step. This is illustrated in figure 22.

6.2.1. The case α = β = 1. In the case α = β = 1, or κ1 = κ2 = 1, it is shown in [1] that

Z2r (1|1; 1, 1) ≡ 〈W |Cr |V 〉|α=β=1 = Cr+1 (6.8)

a Catalan number. This may also be seen in terms of the third path representation
(corresponding to the third matrix representation of section 2). 〈W3|(D3E3)

r |V3〉|α=β=1 is
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− 2pn − 2

delete

up

(a) (b)

2pn + 2

2in − 1
2r 2r

Figure 23. (a) Schematic path picture for the correlation functions for α = β = 1, showing the
bubble following the last forced up step. (b) Removing the bubble leaves a shorter Dyck path.

just the total number of one-up paths of length 2r and these biject to Dyck paths of length
2r + 2 by adding an up step at the beginning and a down step at the end of each path (the dotted
steps in figure 22). The result follows since number of Dyck paths of length 2p is well known
to be the Catalan number Cp. The result also follows from (4.29) by setting c = d = 0 and
noting that B2r+1,1 = Cr+1 which is the m = 0 term.

It is also shown in [1], equation (88) that

Gn(i1, i2, . . . , in; r) =
r−in∑
pn=0

Cpn
Gn−1(i1, i2, . . . , in−1; r − pn − 1). (6.9)

This may be derived combinatorially as follows. Again we use the third path representation
and to avoid special cases we imagine that the paths are extended to y = 0 by a further down
step. For each path which contributes to Gn(i1, i2, . . . , in; r) we determine a sub-path ωn

which starts with the last forced up step, sn, and ends when the path returns to the same height
for the first time. This sub-path contains a bubble which we suppose has length 2pn so that
the sub-path has length 2pn + 2 (see figure 23(a)). Immediate return corresponds to pn = 0
and the maximum value of pn is determined by the condition, (2in − 1) + (2pn + 2) = 2r + 1,
that there are no further steps beyond ωn.

We can now define a new path obtained by deleting ωn and joining the two (possibly empty)
resulting sub-paths which remain. This path contributes to Gn−1(i1, i2, . . . , in−1; r − pn − 1).
The result follows by partitioning the paths contributing to Gn according to the value of
pn. For a given value of pn the number of configurations is therefore the product Gn−1 and
the number of configurations of ωn which is equal to the number, Cpn

, of Dyck paths of
length 2pn.

For k = 1, 2, . . . n, let

qk = n − k +
n∑

j=k

pj (6.10)

then as pointed out in [1], equation (6.9) may be iterated or, combinatorially, n bubbles may
be removed, to give the explicit formula

Gn(i1, i2, . . . , in; r) =
∑
p1�0

· · ·
∑
pn�0

Cp1Cp2 · · · Cpn
Cr−q1 (6.11)

where the upper limits are pk = r − ik − qk+1 with qn+1 = 0.
This formula was previously conjectured by Derrida and Evans [19] on the basis of

computer calculations up to r = 10.
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6.2.2. General α and β. Equation (45) of [1] is the case n = 2 of the following proposition
which we now prove using a lattice path representation. An algebraic proof was given in [1].

Proposition 4. For 1 � i1 < i2 < · · · < in � r − 1

Gn(i1, i2, . . . , in; r) =
r−in−1∑

p=0

CpGn−1(i1, i2, . . . , in−1; r − p − 1)

+ β̄Gn−1(i1, i2, . . . , in−1; in − 1)

r−in∑
p=0

B2r−2in−p−1,p−1β̄
p (6.12)

=
r−in−1∑

p=0

CpGn−1(i1, i2, . . . , in−1; r − p − 1)

+ β̄Gn−1(i1, i2, . . . , in−1; in − 1)R2(r−in)(0; β̄) (6.13)

where Rt(h; κ) is the return polynomial for ballot paths for which an explicit formula is given
in (3.8).

Notes.

• When n = 1,G0(s) should be replaced by Z2s(1|1; ᾱβ̄, κ2). This yields [1] equation (43).
• The case in = r reduces to Gn(i1, i2, . . . , in−1, r; r) = β̄Gn−1(i1, i2, . . . , in−1; r − 1),

since the first sum is empty and R0(0; β̄) = 1. This reduces to [1] equation (44)
when n = 1.

• When α = β = 1 this reduces to (6.9) since using

k∑
p=0

B2k−p−1,p−1 = Ck

the second sum of (6.12) is just the missing term p = r − in of the first sum.
• The case n = 1 was also considered by Schütz and Domany [16]. They solved the

difference equations of [17] and used the solution to find a simple expression for the
density gradient. Noting that their coefficient bNN(r) is the ballot number BN+r−1,N−r−1

it follows that equation (3.3) of [16] is equivalent to

G1(i + 1; r) − G1(i, r) = (ᾱβ̄ − ᾱ − β̄)R2i−1(1; ᾱ)R2r−2i−1(1; β̄). (6.14)

It may be seen that this expression follows immediately by noting a cancellation of the
cross paths which occur in path representation two of G1(i; r).

• In constructing a proof it was found that the first representation in terms of jump paths
was simpler to use than the third which we used in the special case of the previous section.
It was explained after definition 6, that jump-step paths (representing Z2r ) never intersect
y = 0. However this is not the case in calculating Gn(i1, i2, . . . , in; r) since the paths are
modified by the forced up steps. This allows y = 0 to be visited and then a forced up step
returns the path to y = 1. Note that the down step leading to y = 0 has a weight β̄.

Proof. Partition the modified jump-step configurations according as the last forced up step,
sn, which starts at height y = 2k, k � 1 (case A) or y = 0 (case B) (see figure 24).

Case A. A sub-path ωn may be identified in exactly the same way as in the case α = β = 1
but in this case the Bubble of length 2p obtained by deleting the first and last steps of ωn

is not an elevated Dyck path since it may contain jump steps. However the number of
configurations of ωn is still equal to Cp (see below) for any value of k and since ωn avoids
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delete

2k

up

up

(a)

(b)

2pn + 2

2in − 1

2in − 1

1
β

1
β

1
β

1
β

Figure 24. (a) Case A: Last forced up step starts at y = 2k, k � 1. (b) Case B: Last forced up
step starts at y = 0. Note, the ‘bubbles’ represent jump-step sub-paths.

y = 1 its steps are unweighted. Thus on partitioning the paths according to the length
(2p + 2, p = 0, 1, . . . r − in − 1) of ωn a factor Cp may be removed from the sum over paths
having the same value of p. When ωn is deleted the remaining steps form a weighted path of
length 2r − 2p − 2 which has only n − 1 forced up steps. Summing over configurations of
this path for given k and then summing over k � 1 gives Gn−1(i1, i2, . . . , in−1; r − p − 1).
The first term of the proposition formula is thus derived provided that we can show that the
number of configurations of ωn is Cp.

Now the paths ωn of length 2p + 2 biject to P
(J)

2p;1 by vertical translation through distance
2k and from (2.10) and (2.13)∣∣P (J)

2p;1
∣∣ = Z

(1)
2p

∣∣
ᾱ=0,β̄=1 = Z

(3)
2p

∣∣
κ1=0,κ2=1 = Cp. (6.15)

The last equality follows since when κ1 = 0 the one-up paths which visit y = 0 have zero
weight and the remaining paths, which have weight 1 when κ2 = 1, biject to Dyck paths by
vertical translation through unit distance. This result is also proved combinatorially in [11].

Case B. The weighted sum over paths may be factorized into three parts.

(i) A factor which arises from the sub-path consisting of the first 2in − 2 steps. The sub-path
ends at y = 1 and has only n − 1 forced up steps, therefore the sum over these sub-paths
yields Gn−1(i1, i2, . . . , in−1; in − 1).

(ii) A factor β̄ which arises from the next two steps which visit y = 0 and return to y = 1.
The second of these is the last forced up step sn having weight 1.

(iii) A factor arising from the sub-path consisting of the remaining 2r − 2in steps which is
a jump-step path beginning and ending at y = 1, avoiding y = 0. The weighted sum
over these paths is obtained by setting ᾱ = 0 in the normalizing factor for paths of length
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UD DU UD

(b)(a)

D

Figure 25. (a) A state path and UD word, DUUDDUD corresponding to the state, �τ =
(1, 0, 0, 1, 1, 0, 1). (b) A pair of non-intersecting square lattice paths of length 7.

2r − 2in, thus using corollary 7

Z2r−2in |ᾱ=0 =
r−in∑
m=1

B2r−2in−m−1,m−1β̄
m.

The product of these three factors yields the second term of the formula. �

7. Non-intersecting paths and the stationary state probability distribution: α = β = 1

In this section, we show, for the case α = β = 1, that the probability of finding the system
in a particular state �τ is related to the combinatorial problem of enumerating the number of
configurations of a particular type of pairs of non-intersecting paths. If we do not specify
the exact state, but only the number of particles, then the probability of finding the system
in a stationary state with a fixed number of particles (in any position) is given by a simple
determinant.

Most paths in this section will not be restricted to the upper half plane, such paths are
called binomial paths. More precisely we have the following definition.

Definition 1 (binomial path). Let ω = (u0, u1, . . . , ut ) where ui ≡ (xi, yi) ∈ Z × Z with
ui − ui−1 ∈ {(1,−1), (1, 1)}. The path ω is called a binomial path.

The number of binomial paths such that u0 = (0, 0), ut = (t, y) is given by

|{ω}| =
{(

t

(t+y)/2

)
if t + y is even

0 otherwise.
(7.1)

We will be interested in binomial paths defined by the state of the system. To this end we
define a ‘state path’ as follows.

Definition 2 (state path). Let �τ be the ASEP state on a line segment with r sites. A state path,
ω(�τ) = (v0, v1, . . . , vr ), is a particular binomial path where

vi − vi−1 =
{

(1, 1) if τi = 0

(1,−1) if τi = 1.
(7.2)

Thus a particle contributes a down step and a vacancy contributes an up step. An example
of a state path is shown in figure 25(a). We will also need the following definition.

Definition 3 (non-intersecting path pair). Let ω1 = (u0, u1, . . . , ut ) and ω2 = (v0, v1, . . . , vt )

be two t length binomial paths with ω1 starting at (0, 0) and ending at
(
t, yf1

)
and ω2 starting

at (0, 2) and ending at
(
t, yf2

)
. If there are no vertices in common between the two paths then

they are said to be a non-intersecting path pair.

An example of a pair of non-intersecting paths is shown in figure 25(b). For convenience,
if vi − vi−1 = (1, 1) we will represent the up step by ‘U’ and if vi − vi−1 = (1,−1) we will
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-U D -

(a)

(c)

(b)

(d)

D - -U -U D - -U

DU DU DUUUDUDD DU

DU DU DUUUDUDD DU

UD U U D D D

UDU D UD U

UD U D UD D

Figure 26. (a) The correspondence with a particle configuration and a set of one-up lattice paths.
The bold letter ‘U’ and ‘D’ are fixed steps, the dash represents and arbitrary step. (b) An example
of one possible choice of the ‘dashes’ and the corresponding one-up path. (c) The equivalent
non-intersecting configuration of paths. The sub-sequence of bold (fixed) steps fixes the lower
state path (note the ‘U’ and ‘D’s are interchanged first) and the subsequence of plain characters
determine the upper path. (d ) The two non-intersecting path configurations giving rise to the
numerator for P3((0, 1, 0)) = 2/14.

represent the down step by ‘D’. An example of a state path and the corresponding ‘UD’ word
is shown in figure 25(a).

We now have the following proposition giving the probability of finding the system in
some state.

Proposition 5. Let α = β = 1 then, in the stationary state of the ASEP, the probability, Pr(�τ)

of finding the system of r sites in configuration �τ having k particles is given by

Pr(�τ) = |{(ω1, ω2)}|/Cr+1 (7.3)

where {(ω1, ω2)} is the set of all pairs of non-intersecting paths where ω2 is any binomial path
(with no vertices in common with ω1) that ends at (r, 2r − k + 2), and ω1 is the state path
corresponding to state �τ . Cr+1 is a Catalan number.

An example of the two non-intersecting path configurations giving rise to the numerator
of P3((0, 1, 0)) = 2/14 is shown in figure 26(d).

Proof. As noted in section 6.2 the probability of finding particles at positions i1, i2, . . . , in is
determined by enumerating weighted one-up paths were the steps sk ≡ e2ik must be up steps
with weight one. Similarly, if we require there to be no particle at position i (i.e. τi = 0), then
in the weighted one-up path the step ending at 2i − 1 must be a down step (i.e. e2i−1 must be
a down step) with weight one. Since, we only consider the case α = β = 1 all the weights
are unity.

These up and down step constraints are conveniently represented by a sequence of
characters as illustrated in figure 26(a). A particle contributes the pair ‘–U’ and a vacancy the
pair ‘D–’, where the dash represents an up or down step (all possibilities consistent with the
one-up path constraint). An example of one choice of up and down steps for the dashes, and
the corresponding one-up path, is shown in 26(b). The constrained steps are shown in bold.
From any sequence of U and D representing a path we can construct a pair of paths (ω1, ω2).
This process is shown in 26(c). ω1 is defined to start at (0, 0) and consist of the sub-sequence
of constrained steps with up steps replaced by down steps and vice versa; this is just the state
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A
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C D E F

A

C F
G

D
H

Figure 27. A one-up path with a single constrained up step, showing the process of deleting it and
moving the ‘floor’ down to y = −1.

path ω(�τ). ω2 is defined to start at (0, 2) and consist of the subsequence of unconstrained
steps (arising from the ‘dashes’). We will refer to ω2 as the ‘upper’ path.

It now remains to prove that the path pair (ω1, ω2) is non-intersecting. Clearly the length
of each path is r. The ending height of the state path is the difference between the number of
vacancies (which contribute an up step) and the number of particles (which contribute a down
step), y = (r − k) − k = r − 2k. Since the initial path is a one-up path the number of U and
D must me equal and hence the difference between the number of unconstrained up and down
steps is also r − 2k. Since we start the upper path at y = 2, it will end at y = r − 2k + 2. The
non-intersection is proved as follows. Consider the case of a one-up Dyck path with a single
constrained up step in some given column. Referring to figure 27 this up step is between A
and B. Since it is a one-up path, it does not go below y = 0. Now, delete the up step, AB and
shorten the path. The new path clearly does not go below CD and also does not go below GH
(rather than DF), is one step shorter, and ends at (2r − 1, 0).

Now, returning to the original one-up path (with half the steps constrained), we repeat,
moving left to right, the process of deleting the constrained steps. If the deleted step is up,
then the ‘floor’ from that x coordinate on, moves down one unit (as in the GH of figure 27)
and if the constrained step is down the floor, from that x coordinate on, moves up on unit.
This deletion process is equivalent to replacing successive pairs of steps of the original one-up
path by single steps (the ‘dashed’ step) and simultaneously adjusting the floor as shown in

figure 28. The new floor defines a second path, made of a sequence of, –| and |– ‘steps’.

The important point is that at the completion of this process the path (with half the steps
removed) never steps below (i.e. no edges below) the new floor. Thus if we push the upper
path up one unit (so it starts at (0, 2)) it will have no vertices in common with the new floor.

Finally, replace a |– pair with a single up step and –| with a single down step—see figure 28(i).

The resulting path is the precisely the state path and the upper path is a binomial path—see
figure 28( j)—with no vertices in common with the state path. �

Proposition 6. Let α = β = 1 then, in the stationary state of the ASEP, the probability, Pr,k ,
of finding k particles is given by the determinant.

Pr,k =
∑

�τ :k(�τ)=k

Pr(�τ) = 1

Cr+1
det

∣∣∣∣∣
(

r

k

) (
r

k−1

)
(

r

k+1

) (
r

k

)
∣∣∣∣∣ = 1

(r + 1)Cr+1

(
r + 1

k

)(
r + 1

r − k

)
(7.4)

where the sum is over all states such that the number of particles in state �τ , k(�τ) = k.

Proof. Summing over all possible positions of the k particles is equivalent to summing over all
possible state paths that end at (r, r − 2k). For each possible state path we are also summing
over all possible positions of ω1, ending at (r, r − 2k + 2) which do not intersect the state path.
This double sum is thus equivalent to summing over all non-intersecting path pairs where
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(a) (b) (c)

(d) (e) (f ) (g)

(h) (i) (j)

Figure 28. Parts (a)–(h) showing the action of repeatedly deleting the constrained up and down
steps (shown bold). (i) The horizontal and vertical steps of the new floor are replaced by up and
down steps (shown bold). ( j) The floor steps have been removed and the upper path has been
moved up one unit so it starts at (0, 2) giving a non-intersecting pair of binomial paths—the lower
path is the state path.

ω1 and ω2 are binomial paths. The number of such non-intersecting paths is given by the
Gessel–Viennot determinant [21]. �

8. Conclusion

We have shown that the normalization of the ASEP can be interpreted as various lattice path
problems. The lattice path problems can then be solved using the constant term method
(CTM). The combinatorial nature of the CTM enables us to interpret the coefficients of the
normalization polynomials as various un-weighted lattice path problems—usually as ballot
paths. One particular form has a natural interpretation as an equilibrium polymer chain
adsorption model. The ‘ω’ form of the normalization is particularly suited to finding the
asymptotic expansion of normalization and hence the phase diagram. We also formulate a
combinatorial interpretation of the correlation functions.

The lattice path interpretations enable us to make connections with many other models.
In particular, because of the strong combinatorial nature of the CTM we are able to find a new
‘canonical’ lattice path representation. In a further paper [20] we show that this representation
leads to an understanding of a non-equilibrium model (the ASEP model) in terms of a related
equilibrium polymer model. Also, having extended the polymer chain model so that the
endpoints have arbitrary displacements from the surface the method of Gessel and Viennot
[21], [22] (see also [23]) may be used to express the partition function of a network of non-
intersecting paths as a determinant. In particular, the case of two paths gives the partition
function for a vesicle model with a two-parameter interaction with a surface. A bijection
between these vesicles and compact percolation clusters [10] then enables an analysis of the
properties of the clusters attached to damp wall to be made. These applications will also be
the subject of a subsequent publication.

It is also of combinatorial interest to understand how the various path problems might
be related. Clearly they are related algebraically as they are all just representations of the
same algebra (and thus related by different similarity transformations). In a subsequent
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paper, [11], we show combinatorially (using bijections and involutions) how the various path
representations are combinatorially equivalent.
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Appendix A. Specimen partition functions

Z0(1|1; κ1, κ2) = 1 (A.1)

Z2(1|1; κ1, κ2) = κ1 + κ2 (A.2)

Z4(1|1; κ1, κ2) = κ1
2 + κ2 + 2κ1κ2 + κ2

2 (A.3)

Z6(1|1; κ1, κ2) = κ1
3 + 2κ2 + 2κ1κ2 + 3κ1

2κ2 + 2κ2
2 + 3κ1κ2

2 + κ2
3 (A.4)

Z8(1|1; κ1, κ2) = κ1
4 + 5κ2 + 4κ1κ2 + 3κ1

2κ2

+ 4κ1
3κ2 + 5κ2

2 + 6κ1κ2
2 + 6κ1

2κ2
2 + 3κ2

3 + 4κ1κ2
3 + κ2

4 (A.5)

Z0(3|1; κ1, κ2) = 0 (A.6)

Z2(3|1; κ1, κ2) = 1 (A.7)

Z4(3|1; κ1, κ2) = 2 + κ1 + κ2 (A.8)

Z6(3|1; κ1, κ2) = 5 + 2κ1 + κ1
2 + 3κ2 + 2κ1κ2 + κ2

2 (A.9)

Z8(3|1; κ1, κ2) = 14 + 5κ1 + 2κ1
2 + κ1

3 + 9κ2 + 6κ1κ2 + 3κ1
2κ2 + 4κ2

2 + 3κ1κ2
2 + κ2

3

(A.10)

Zt(1|3; κ1, κ2) = κ2Zt(3|1; κ1, κ2) (A.11)

Z0(3|3; κ1, κ2) = 1 (A.12)

Z2(3|3; κ1, κ2) = 2 (A.13)

Z4(3|3; κ1, κ2) = 5 + κ2 (A.14)

Z6(3|3; κ1, κ2) = 14 + 4κ2 + κ1κ2 + κ2
2 (A.15)

Z8(3|3; κ1, κ2) = 42 + 14κ2 + 4κ1κ2 + κ1
2κ2 + 5κ2

2 + 2κ1κ2
2 + κ2

3. (A.16)

Appendix B. Constructive proof of proposition 2

The formula

Zt(y|yi; κ1, κ2) = CT
[
	tzy

(
z̄yi

+ U(z)zyi )]
clearly satisfies the general equation (4.7) and the initial condition (4.4) provided that

CT
[
zy+yi

U(z)
] = 0. (B.1)
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In order to satisfy the boundary condition (4.11)

CT
[
	tz

(
z̄yi

+ U(z)zyi )] = κ1CT
[
	t−2z

(
z̄yi

+ U(z)zyi )]
+ κ2CT

[
	t−1z2

(
zyi

+ U(z)zyi )]
or

CT
[
	t−2z̄yi−1(	2 − κ1 − κ2z	)

] = −CT
[
	t−2V (z)zyi−1

]
where

V (z) = (1 − (κ̄1 + κ̄2)z
2 − κ̄2z

4)U(z).

Replacing z by z̄ everywhere under the CT operation leaves the value unchanged so

V (z) = −(	2 − κ1 − 	z̄κ2) = z̄2(κ2 − 1 + (κ̄1 + κ̄2)z
2 − z4)

and (B.1) is satisfied provided that y + yi > 2 or yi > 1 since y � 1. Hence in this case
yi > 1

U(z) = z̄2(−1 + κ2G(z)).

When yi = 1 the boundary condition is satisfied if

CT[	t−2(	2 − κ1 − κ2z	)] ≡ CT[	t−2(z̄2 − 2 + z2 − κ1 − κ2(1 + z2))] = −CT[	t−2V (z)]

and replacing z̄2 by z2 in the second expression gives

V (z) = κ̄1 + κ̄2 + κ̄2z
2 − z2

which satisfies (B.1) and hence

U(z) = z̄2(−1 + G(z)).
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